A reduction algorithm for matrix groups with an extraspecial normal subgroup

نویسندگان

  • Peter Brooksbank
  • Alice C. Niemeyer
  • Ákos Seress
چکیده

We describe an algorithm which, for any given group G containing an absolutely irreducible, extraspecial normal subgroup, constructs a homomorphism, with nontrivial kernel, from G onto a nontrivial group of permutations or matrices. Thus we reduce the problem of computing with G to two smaller problems. The algorithm, which uses a blend of geometric and black-box techniques, forms part of the broader project to determine the structure of an arbitrary matrix group. 2000 Mathematics Subject Classification: 20H30, 20P05, 20C40

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Quantum Algorithm for the Hidden Subgroup Problem in Extraspecial Groups

Extraspecial groups form a remarkable subclass of p-groups. They are also present in quantum information theory, in particular in quantum error correction. We give here a polynomial time quantum algorithm for finding hidden subgroups in extraspecial groups. Our approach is quite different from the recent algorithms presented in [17] and [2] for the Heisenberg group, the extraspecial p-group of ...

متن کامل

ua nt - p h / 07 01 23 5 v 1 3 1 Ja n 20 07 An efficient quantum algorithm for the hidden subgroup problem in extraspecial groups ∗

Extraspecial groups form a remarkable subclass of p-groups. They are also present in quantum information theory, in particular in quantum error correction. We give here a polynomial time quantum algorithm for finding hidden subgroups in extraspecial groups. Our approach is quite different from the recent algorithms presented in [17] and [2] for the Heisenberg group, the extraspecial p-group of ...

متن کامل

ar X iv : 0 70 7 . 12 60 v 1 [ qu an t - ph ] 9 J ul 2 00 7 An efficient quantum algorithm for the hidden subgroup problem in nil - 2 groups ∗

In this paper we extend the algorithm for extraspecial groups in [12], and show that the hidden subgroup problem in nil-2 groups, that is in groups of nilpotency class at most 2, can be solved efficiently by a quantum procedure. The algorithm presented here has several additional features. It contains a powerful classical reduction for the hidden subgroup problem in nilpotent groups of constant...

متن کامل

ALMOST ALL EXTRASPECIAL p-GROUPS ARE SWAN GROUPS

Let P be an extraspecial p-group which is neither dihedral of order 8, nor of odd order p and exponent p. Let G be a finite group having P as a Sylow p-subgroup. Then the mod-p cohomology ring of G coincides with that of the normalizer NG(P ).

متن کامل

ON p-NILPOTENCY OF FINITE GROUPS WITH SS-NORMAL SUBGROUPS

Abstract. A subgroup H of a group G is said to be SS-embedded in G if there exists a normal subgroup T of G such that HT is subnormal in G and H T H sG , where H sG is the maximal s- permutable subgroup of G contained in H. We say that a subgroup H is an SS-normal subgroup in G if there exists a normal subgroup T of G such that G = HT and H T H SS , where H SS is an SS-embedded subgroup of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005